Version: 1.00

I

FmindsTor ME;

U7

LEGO® MINDSTORMS® NXT
Bluetooth® Developer Kit

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
LEGO, the LEGO logo, MINDSTORMS and the MINDSTORMS logo are trademarks of the LEGO Group

©2006 The LEGO Group
Other product and company names listed are trademarks or trade names of their respective companies.

mndstTorms Version: 1.00
AXT T EmmE
TABLE OF CONTENTS
TABLE OF CONTENTS w.ccccvcvuuusssrseessssssssmseesssssssssssesssssssssessessssssssssssssssssssassesssssssssssessssans 2
HARDWARE SPECIFICATION FOR THE NXT BRICK........cccmmeessssmmmeesssssmsssssssssssssssssnns 3
BLUETOOTH® FUNCTIONALITY WITHIN THE NXTccevtrecrerecarsreeasasesssssessnssessasasens 4
Bluetooth functionality within the NXT Brick 4
INTERFACING WITH THE BLUECORE™ CHIP.........ccoorerecrerccrrreceasssesessnseessseeas e seaens 6
UART interface between the ARM?7 and the BIueCore™ Chip............cooververvvrecieciiesiesieeecesee e 7
BLUETOOTH® DEVICES COMMUNICATING WITH THE NXTccoeeeerueerenrreessssencssnnens 8
Bluetooth® communication with LEGO® MINDSTORMS® NXT programs 8
Sending Bluetooth® data to external BIUELOOth dEVICESo..evververeeerieeesessessessiesssesssesssesss e 8
Reading Bluetooth® data from external BIUEtoOth dEVICES...............vverveerveeersreeieessses s sse e eennen 9
N o o 1 D 10
LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group 2

EZmindsTorms

AXT FPEmE

HARDWARE SPECIFICATION FOR THE NXT BRICK

The LEGO® MINDSTORMS® NXT brick uses various advanced electronics to yield its broad functionality. For details
on the hardware functionality of the LEGO® MINDSTORMS® NXT, see the LEGO MINDSTORMS NXT Hardware
Developer Kit document.

Here is a summary list of hardware specifications for the NXT brick:

Main processor: Atmel® 32-bit ARM® processor, AT91SAM7S256
- 256 KB FLASH
- 64 KB RAM
- 48 MHz

Co-processor: Atmel® 8-bit AVR processor, ATmega48
-4 KB FLASH
- 512 Byte RAM
-8 MHz

Bluetooth wireless communication CSR BlueCore™ 4 v2.0 +EDR System
- Supporting the Serial Port Profile (SPP)
- Internal 47 KByte RAM
- External 8 MBit FLASH
- 26 MHz
USB 2.0 communication Full speed port (12 Mbit/s)

4 input ports 6-wire interface supporting both digital and analog interface
- 1 high-speed port, IEC 61158 Type 4/EN 50170 compliant

3 output ports 6-wire interface supporting input from encoders

Display 100 x 64 pixel LCD black & white graphical display
- View area 26 x 40.6 mm

Loudspeaker Sound output channel with 8-bit resolution
- Supporting sample rate 2-16 KHz

4 button user-interface Rubber buttons
Power source 6 AA batteries
- Recommend alkaline batteries

- Rechargeable Lithium-Ion battery 1400 mAH is available

Connector 6-wire industrial-standard connector, RJ12 Right side adjustment

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group 3

Version: 1.00

EmiNndsTOrms

AXT FPEmE

BLUETOOTH® FUNCTIONALITY WITHIN THE NXT

The NXT brick supports wireless communication using Bluetooth® by including a CSR BlueCore™ 4
version 2 chip. The NXT brick can be connected wirelessly to three other devices at the same time but
can only communicate with one device at a time. This functionality has been implemented using the
Serial Port Profile (SPP), which can be considered a wireless serial port. The NXT brick can communi-
cate with Bluetooth devices that can be programmed to communicate using the LEGO® MINDSTORMS®
NXT Communication Protocol commands and that support the Serial Port Profile (SPP). It's possible to
send programs and sound files between NXT bricks and to use wireless communication to send and
receive information between bricks during program execution. To reduce the power consumption used
by Bluetooth, the technology has been implemented as a Bluetooth® Class Il device, which means that it
can communicate up to a distance of approximately 10 meters.

BLUETOOTH FUNCTIONALITY WITHIN THE NXT BRICK

The Bluetooth functionality within the NXT brick is set up as a master/slave communication channel.
This means that one NXT within the network needs to function as the master device and that other NXT
bricks communicate through it if they need to. The figure below shows which NXT devices can
communicate directly within a network.

MEEEREE

HXT MAZTER

<[>
—

HxT
1lz]z]4

:

Al el [uss

Al el c Juss

Al Bl c Juss

HNXTZLAVE 1 NXTZLAVEZ MN<TZLAVE 3
<0 <0 <10
— — —
HXT HxT HxT
12274 1]z2]aT]4 HEFERE

Figure 1: Illustrating 4 NXTs communicating using Bluetooth®

As shown in the figure above, the MASTER NXT can be connected to three other Bluetooth devices at

the same time. The MASTER NXT can only communicate with one of the SLAVE devices during a given
moment, meaning that if the MASTER NXT is communicating with NXT SLAVE 1 and NXT SLAVE 3 starts
sending data to the MASTER NXT, the MASTER NXT will not evaluate the received data until it switches
to NXT SLAVE 3.

An NXT is not able to function as both a MASTER and SLAVE device at the same time because this
could cause lost data between NXT devices. This functionality (i.e., serving as a master and slave
device at the same time) has been disabled in the standard LEGO MINDSTORMS NXT firmware.

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group 4

EZmindsTorms

AXT FPEmE

Connections to other Bluetooth devices occur through channels. The NXT has four connection
channels used for Bluetooth communication. Channel O is always used by SLAVE NXT devices in
communicating with the MASTER NXT (i.e., towards the MASTER NXT) while channels 1, 2 and 3 are used
for outgoing communication from the MASTER device to the SLAVE devices.

In figure 1 above, NXT MASTER will use communication channels 1, 2 and 3 when communicating
respectively with NXT SLAVE1, NXT SLAVE 2 and NXT SLAVE 3. When one of the NXT SLAVEs
communicates with the NXT MASTER, it will use communication channel 0.

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group 5

EZmindsTorms

AXT FPEmE

INTERFACING WITH THE BLUECORE™ CHIP

Bluetooth® functionality within the NXT is implemented using a standalone chip, a CSR BlueCore™ 4
with an external 8 Mbit FLASH memory. The Bluetooth chip from CSR contains all the necessary
hardware to run a self-contained Bluetooth node. A 16-bit integrated processor runs the Bluetooth stack
implemented by CSR, called Bluelab. The NXT runs version 3.2 of Bluelab. The firmware within the
BlueCore™ integrates a user programmable VM-task allowing us to control and run small amounts of
application code. A command interpreter is integrated within the VM that is able to decode and
respond to commands received through the UART interface from the ARM7 processor.

The VM has a full implementation of both the Bluetooth SPP-A and SPP-B profiles. The SPP-A profile is
used when the local BlueCore™ is the connection initiator while the SPP-B profile is used when another
Bluetooth device initiates the connection. The BlueCore™ uses what is referred to as “stream-mode” to
exchange data at a rate of <= 220 K baud after a connection is established. When BlueCore™ is not in
“stream-mode,” it is in “command-mode” which is used to control the VM application within BlueCore™
and by extension, the Bluetooth functionality within the NXT. Which communication type the UART
includes is controlled by two interface signals (ARM7__CMD & BC4__CMD).

For a detailed description of the communication protocol used between the ARM7 processor and the
BlueCore™ chip, see Appendix 3.

The figure below shows the interface between the ARM7 processor and the BlueCore™ chip. (Its
functionality is explained below the figure.) For a detailed description of the pin layout, see the
hardware schematics for the NXT brick.

3w BC4
BT-STACK
SPP
— GND—»|
SPl UART
SRR
DI DO SCK 5 Tassi ob oy T< R RTS CTS
bl] RN
SPl UART
—3.3V—p=|
ARM7

——GND—

Figure 2: Hardware interface between the ARM7 and BlueCore™ chip

The SPI interface allows the possibility of updating the BlueCore™ chip. It is not in use during normal
operation of the NXT brick. The SPI interface is shared with the display within the NXT brick.

The Reset pin is used at startup to re-initialize the chip correctly and to disable Bluetooth.

BC4-CMD: Indication from the BlueCore™ to the ARM7 as to which data type the BlueCore™ expects to
send to the ARM7.

ARM7-CMD: Indication from the ARM7 to the BlueCore™ as to which data type the ARM7 expects to
send to the BlueCore™.

UART communication is used for both data and command communication between the BlueCore™ and
the ARM7 processor.

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group 6

EZmindsTorms

AXT FPEmE

UART interface between the ARM7 and the BlueCore™ chip

The UART within the BlueCore™ chip is initialized for communication with the ARM7 using the following
set-up (both for stream-mode and command-mode):

Communication speed: 460.8 K bit/s

Data bits: 8 bits

Parity: No parity bits

Stop bit: One stop bit

Flow control: Hardware handshake signals (RTS & CTS)

To establish Bluetooth communication between two Bluetooth devices, several steps need to be carried
out. Within the NXT brick, all Bluetooth® functionality is handled by the BlueCore™ chip and its
functionality is controlled through the command-mode setup and the specific commands, which are
described in the LEGO® MINDSTORMS® NXT ARM Bluetooth® Interface document.

All of the commands needed to control the BlueCore™ chip in setting up Bluetooth® communication
between devices are handled by the communication module of the standard LEGO® MINDSTORMS®
NXT firmware.

During any third-party firmware development for the ARM7 processor, it's important to use the interface
provided in the LEGO® MINDSTORMS® NXT ARM7 Bluetooth® Interface document; the virtual machine
running in the BlueCore™ firmware is only able to understand these commands. All other commands
will cause the BlueCore™ firmware to panic, which will require a hardware reset (i.e., turning the brick off
and then on).

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group 7

EZmindsTorms

AXT FPEmE

BLUETOOTH® DEVICES COMMUNICATING WITH THE NXT

The LEGO® MINDSTORMS® NXT brick can communicate with external Bluetooth devices that use the
serial port profile (SPP) and can be programmed to use the LEGO® MINDSTORMS® NXT Communication
Protocol. A detailed description of the protocol's commands and their respective functions can be
found in the LEGO® MINDSTORMS® NXT Communication Protocol document.

It's also possible to send direct commands to the LEGO® MINDSTORMS® NXT brick. Direct commands
are interpreted by the NXT brick and translated into specific functions without additional user
interaction. This enables direct control of the NXT brick from an external Bluetooth® device such as a
mobile phone or PDA. A detailed description of direct commands and their respective functions is
found in the LEGO® MINDSTORMS® NXT Direct Command document.

BLUETOOTH® COMMUNICATION WITH LEGO® MINDSTORMS® NXT PROGRAMS

It's possible to send and receive Bluetooth® messages between Bluetooth® devices while using the
LEGO® MINDSTORMS® NXT software. These tasks are performed using the message commands,
MessageRead and MessageWrite, described in the LEGO® MINDSTORMS® NXT Direct Command
document.

As described earlier, Bluetooth functionality is implemented as a master-slave protocol with all commu-
nication controlled by the master device. This allows for reliable communication especially when
multiple slave devices are connected to one master device. When the master device is programmed to
verify whether it has received data from one of three potential slave devices, it will actually send a
“MessageRead” command to the specific slave device to verify that it has data ready for the master
device.

Sending Bluetooth® data to external Bluetooth devices

This section describes the data that will be sent from an NXT to another Bluetooth® device (with the NXT
functioning as the master during the communication).

MessageWrite

Byte 0: 0x00 or 0x80

Byte 1: 0x09

Byte 2: Inbox number (0 — 9)

Byte 3: Message size

Byte 4 - N: Message data, where N = Message size + 3

Message data is treated as a string; it must include null termination to be accepted. Accordingly,
message size must include the null termination byte. Message size must be capped at 59 for all
message packets to be legal on USB!

Return package:
Byte 0: 0x02

Byte 1: 0x09
Byte 2: Status Byte

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group 8

EZmindsTorms

AXT FPEmE

Reading Bluetooth® data from external Bluetooth devices

This section describes the data that will be sent from an NXT to another Bluetooth® device (with the NXT
functioning as the master during the communication and polling the slave for data).

First, the NXT will send the following MessageRead command to the slave device:

MessageRead

Byte 0: 0x00 or 0x80

Byte 1: Ox13

Byte 2: Remote Inbox number (0 — 9)

Byte 3: Local Inbox number (0 — 9)

Byte 4: Remove? (Boolean; TRUE (non-zero) value clears message from Remote Inbox)

Return package:
Byte 0: 0x02

Byte 1: Ox13

Byte 2: Status Byte

Byte 3: Local Inbox number (0 — 9)
Byte 4: Message size

Byte 5 - 63: Message data (padded)

Message data is treated as a string; it must include null termination. Accordingly, message size
includes the null termination byte. Furthermore, return packages have a fixed size, so the message
data field will be padded with null bytes.

Note that the remote Inbox number may specify a value of 0-19, while all other mailbox numbers should
remain below 9. This is due to the master-slave relationship between connected NXT bricks. Slave
devices may not initiate communication transactions with their masters, so they store outgoing
messages in the upper 10 mailboxes (indices 10-19). Use the MessageRead command from the master
device to retrieve these messages.

When reading remote messages from slave devices, send the following commands:
0x05, 0x00, 0x00, 0x13, 0x0A, 0x00, 0x01 => Read Mailbox O from slave and clear message on slave
0x05, 0x00, 0x00, 0x13, 0x0B, 0x01, 0x01 => Read Mailbox 1 from slave and clear message on slave

If data is ready from the slave device, the following message will be send to the master NXT from the
slave device:

MessageWrite

Byte 0: 0x00 or 0x80

Byte 1: 0x09

Byte 2: Inbox number (0 — 9)

Byte 3: Message size

Byte 4 - N: Message data, where N = Message size + 3

Message data is treated as a string; it must include null termination to be accepted. Accordingly,
message size must include the null termination byte. Message size must be capped at 59 for all
message packets to be legal on USB!

Return package:
Byte 0: 0x02

Byte 1: 0x09
Byte 2: Status Byte

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group 9

EmindsTorms

AXT FPEmE

APPENDIX

1. LEGO® MINDSTORMS® NXT Communication Protocol
2. LEGO® MINDSTORMS® NXT Direct Commands
3. LEGO® MINDSTORMS® NXT ARM?7 Bluetooth® Interface specification

Version: 1.00

LEGO® MINDSTORMS® NXT Bluetooth® Developer Kit
©2006 The LEGO Group

